56 research outputs found

    Zeta Function Zeros, Powers of Primes, and Quantum Chaos

    Full text link
    We present a numerical study of Riemann's formula for the oscillating part of the density of the primes and their powers. The formula is comprised of an infinite series of oscillatory terms, one for each zero of the zeta function on the critical line and was derived by Riemann in his paper on primes assuming the Riemann hypothesis. We show that high resolution spectral lines can be generated by the truncated series at all powers of primes and demonstrate explicitly that the relative line intensities are correct. We then derive a Gaussian sum rule for Riemann's formula. This is used to analyze the numerical convergence of the truncated series. The connections to quantum chaos and semiclassical physics are discussed

    Haldane exclusion statistics and second virial coefficient

    Full text link
    We show that Haldanes new definition of statistics, when generalised to infinite dimensional Hilbert spaces, is equal to the high temperature limit of the second virial coefficient. We thus show that this exclusion statistics parameter, g , of anyons is non-trivial and is completely determined by its exchange statistics parameter α\alpha. We also compute g for quasiparticles in the Luttinger model and show that it is equal to α\alpha.Comment: 11 pages, REVTEX 3.

    Some exact results for a trapped quantum gas at finite temperature

    Full text link
    We present closed analytical expressions for the particle and kinetic energy spatial densities at finite temperatures for a system of noninteracting fermions (bosons) trapped in a d-dimensional harmonic oscillator potential. For d=2 and 3, exact expressions for the N-particle densities are used to calculate perturbatively the temperature dependence of the splittings of the energy levels in a given shell due to a very weak interparticle interaction in a dilute Fermi gas. In two dimensions, we obtain analytically the surprising result that the |l|-degeneracy in a harmonic oscillator shell is not lifted in the lowest order even when the exact, rather than the Thomas-Fermi expression for the particle density is used. We also demonstrate rigorously (in two dimensions) the reduction of the exact zero-temperature fermionic expressions to the Thomas-Fermi form in the large-N limit.Comment: 14 pages, 4 figures include

    Exact first-order density matrix for a d-dimensional harmonically confined Fermi gas at finite temperature

    Full text link
    We present an exact closed form expression for the {\em finite temperature} first-order density matrix of a harmonically trapped ideal Fermi gas in any dimension. This constitutes a much sought after generalization of the recent results in the literature, where exact expressions have been limited to quantities derived from the {\em diagonal} first-order density matrix. We compare our exact results with the Thomas-Fermi approximation (TFA) and demonstrate numerically that the TFA provides an excellent description of the first-order density matrix in the large-N limit. As an interesting application, we derive a closed form expression for the finite temperature Hartree-Fock exchange energy of a two-dimensional parabolically confined quantum dot. We numerically test this exact result against the 2D TF exchange functional, and comment on the applicability of the local-density approximation (LDA) to the exchange energy of an inhomogeneous 2D Fermi gas.Comment: 12 pages, 3 figures included in the text, RevTeX4. Text before Eq.(25) corrected. Additional equation following Eq.(25) has been adde

    Applications of the Collective Field Theory for the Calogero-Sutherland Model

    Get PDF
    We use the collective field theory known for the Calogero-Sutherland model to study a variety of low-energy properties. These include the ground state energy in a confining potential upto the two leading orders in the particle number, the dispersion relation of sound modes with a comparison to the two leading terms in the low temperature specific heat, large amplitude waves, and single soliton solutions. The two-point correlation function derived from the dispersion relation of the sound mode only gives its nonoscillatory asymptotic behavior correctly, demonstrating that the theory is applicable only for the low-energy and long wavelength excitations of the system.Comment: LaTeX, 31 page

    Exact Multiplicities in the Three-Anyon Spectrum

    Full text link
    Using the symmetry properties of the three-anyon spectrum, we obtain exactly the multiplicities of states with given energy and angular momentum. The results are shown to be in agreement with the proper quantum mechanical and semiclassical considerations, and the unexplained points are indicated.Comment: 16 pages plus 3 postscript figures, Kiev Institute for Theoretical Physics preprint ITP-93-32

    Anomalous particle-number fluctuations in a three-dimensional interacting Bose-Einstein condensate

    Full text link
    The particle-number fluctuations originated from collective excitations are investigated for a three-dimensional, repulsively interacting Bose-Einstein condensate (BEC) confined in a harmonic trap. The contribution due to the quantum depletion of the condensate is calculated and the explicit expression of the coefficient in the formulas denoting the particle-number fluctuations is given. The results show that the particle-number fluctuations of the condensate follow the law N22/15 \sim N^{22/15} and the fluctuations vanish when temperature approaches to the BEC critical temperature.Comment: RevTex, 4 page

    Heavy Meson Description with a Screened Potential

    Get PDF
    We perform a quark model calculation of the bbˉb\bar{b} and ccˉc\bar{c} spectra from a screened funnel potential form suggested by unquenched lattice calculations. A connection between the lattice screening parameter and an effective gluon mass directly derived from QCD is established. Spin-spin energy splittings, leptonic widths and radiative decays are also examined providing a test for the description of the states.Comment: 17 pages, no figures, to appear in Phys. Rev.

    On low temperature kinetic theory; spin diffusion, Bose Einstein condensates, anyons

    Full text link
    The paper considers some typical problems for kinetic models evolving through pair-collisions at temperatures not far from absolute zero, which illustrate specific quantum behaviours. Based on these examples, a number of differences between quantum and classical Boltzmann theory is then discussed in more general terms.Comment: 25 pages, minor updates of previous versio

    Semiclassical evaluation of average nuclear one and two body matrix elements

    Get PDF
    Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case the pairing matrix elements are considered explicitly.Comment: 15 pages, REVTeX, 6 ps figures; changed conten
    corecore